|
In algebra, the Kantor–Koecher–Tits construction is a method of constructing a Lie algebra from a Jordan algebra, introduced by , , and . If ''J'' is a Jordan algebra, the Kantor–Koecher–Tits construction puts a Lie algebra structure on ''J'' + ''J'' + ''J'' + Inner(''J''), the sum of 3 copies of ''J'' and the Lie algebra of inner derivations of ''J''. When applied to a 27-dimensional exceptional Jordan algebra it gives a Lie algebra of type E7 of dimension 133. The Kantor–Koecher–Tits construction was used by to classify the finite-dimensional simple Jordan superalgebras. ==References== * * * * * 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Kantor–Koecher–Tits construction」の詳細全文を読む スポンサード リンク
|